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Abstract
1.	 Having	a	realistic	representation	of	ecosystems	in	fisheries	models	 is	 important	
in	 the	context	of	ecosystem-based	 fisheries	management	 (EBFM).	While	differ-
ent	modelling	approaches	support	EBFM,	accounting	for	trophic	interactions	and	
uncertainty	in	stock	dynamics	is	important	for	management	advice.	Multispecies	
models	exist,	but	are	 rarely	used	 for	assessments.	Most	 stock	assessments	are	
single	species	models	and	predation	is	subsumed	into	natural	mortality,	which	is	
often	an	assumed	known	value.	The	use	of	state-space	assessment	models,	which	
account	for	stochasticity	in	unobserved	processes	(process	errors),	is	increasing.	
However,	many	 stocks	 are	managed	 assuming	deterministic	 processes.	 Little	 is	
known	of	how	ignoring	predation	and	process	errors	in	stock	assessment	can	im-
pact	the	perception	of	the	stocks	and	therefore	fisheries	management.

2.	 We	 developed	 an	 age-structured	 multispecies	 operating	 model	 that	 simulated	
data	with	errors	 in	observations,	 recruitment	and	fish	abundance.	Four	estima-
tion	models	(EMs)	that	differed	according	to	whether	or	not	they	accounted	for	
predation	 or	 process	 errors	 were	 fitted	 to	 the	 simulated	 data.	 Relative	 differ-
ences	between	true	and	predicted	outputs	were	estimated	as	a	measure	of	bias.	
Equilibrium	unfished	biomass	was	estimated	for	each	model	as	a	proxy	reference	
point.

3.	 Ignoring	 predation	 had	 the	 largest	 impact	 on	 stock	 perception	 and	 resulted	
in	 large	 bias	 in	 parameters,	 derived	 outputs	 and	 absolute	 or	 relative	 reference	
points.	 Estimating	unobserved	processes	was	not	 sufficient	 in	 limiting	 the	bias	
when	natural	mortality	was	misspecified.

4.	 Ignoring	process	errors	had	limited	bias	but	the	bias	increased	when	no	contrasts	
existed	in	fishing	mortality	over	time.

5.	 Looking	solely	at	likelihood	values	to	choose	among	models	is	misleading	and	pre-
dictive	ability	could	be	used	to	prevent	selecting	models	that	overfit	the	data.

6. Synthesis and applications.	Ignoring	trophic	interactions	that	occur	in	marine	eco-
systems	induces	bias	in	stock	assessment	outputs	and	results	in	low	model	predic-
tive	ability	with	subsequently	biased	reference	points.	While	it	may	be	difficult	to	
estimate	natural	mortality	when	no	data	exist	to	inform	it,	stock	managers	should	
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1  | INTRODUC TION

Most	of	the	world's	fisheries	that	rely	on	stock	assessments	as	the	
basis	of	scientific	advice	for	management	are	assessed	using	single	
species	models	that	only	account	for	the	dynamics	of	a	specific	fish	
stock	and	the	fishing	pressure	on	this	stock	(Skern-Mauritzen	et	al.,	
2015),	with	 pressures	 such	 as	 environmental	 variability,	 predation	
and	 residual	natural	mortality	often	assumed	known	and	constant	
over	time.	However,	fish	stocks	are	part	of	large	food	webs	and	tro-
phic	pressures	may	vary	with	the	predators’	dynamics,	which	is	incon-
sistent	with	the	assumption	of	constant	natural	mortality.	Therefore	
there	has	been	a	shift	towards	developing	ecosystem	management,	
which	 can	 range	 in	 complexity	 to	 fisheries	 specific	 management	
where	biotic	and	abiotic	factors	(e.g.	climate	change,	predators)	are	
incorporated	individually	in	single	species	assessments,	to	manage-
ment	where	other	uses	of	the	marine	ecosystem,	such	as	renewable	
energy	or	tourism	are	also	modelled	(Dolan,	Patrick,	&	Link,	2016).	
Ecosystem-based	fisheries	management	 (EBFM)	focuses	on	fishing	
activities,	including	biological,	physical	and	economic	considerations	
and	 therefore	 represents	 a	 holistic	 approach	 to	 fisheries	manage-
ment	(Link,	2010).	EBFM	is	currently	strongly	supported	by	numer-
ous	international	agencies	(FAO,	2003;	NOAA,	2016).

Multispecies	 population	models	 are	 becoming	 important	 tools	
for	 supporting	 EBFM	 approaches	 (Plagányi,	 2007).	 These	 models	
account	 for	 trophic	 interactions	 in	 the	 dynamics	 of	 the	 different	
species	simultaneously	and	are	therefore	a	more	realistic	represen-
tation	of	 the	 structure	of	 the	ecosystem.	Different	 levels	of	 com-
plexity	 exist	 in	multispecies	modelling.	Whole	 ecosystem	models,	
such	as	Atlantis	 (Fulton,	Smith,	&	Johnson,	2004)	or	Ecopath	with	
Ecosim	(Christensen	&	Walters,	2004),	are	generally	simulation	mod-
els	and	predation	is	only	informed	empirically	using	diet	data	or	es-
timates	from	the	literature,	and	usually	deterministically	assumed	in	
models.	These	models	are	useful	to	understand	functional	aspects	
of	 the	ecosystem	or	 to	 test	management	scenarios	 (Fulton,	Smith,	
Smith,	&	 Johnson,	 2014;	Grüss	 et	 al.,	 2016;	Weijerman,	 Fulton,	&	
Brainard,	2016).	However,	simulation	models	are	 less	adequate	for	
supporting	 tactical	management	advice,	 since	parameters	defining	
the	dynamics	of	the	populations	should	be	estimated	from	data	spe-
cific	to	the	ecosystem,	to	evaluate	weight	of	evidence	for	alternative	
hypotheses	about	the	population	dynamics	and	to	characterize	un-
certainty	in	our	understanding	of	the	ecosystem.	In	this	case,	statis-
tical	multispecies	stock	assessment	models	are	more	relevant.	These	
assessment	 models	 are	 usually	 of	 moderate	 complexity	 and	 only	

focus	on	the	components	of	the	ecosystem	which	are	biologically	or	
economically	relevant	for	addressing	management	questions,	and	ig-
nore	prey	feedbacks	on	the	predator	such	as	food	limitation	effects	
on	predator's	 growth	 (Plagányi	 et	 al.,	 2014).	Development	of	mul-
tispecies	assessment	models	has	increased	with	the	importance	of	
EBFM	with	models	ranging	from	simple	deterministic	Multispecies	
Virtual	Population	Analysis	(MSVPA)	models	(Helgason	&	Gislason,	
1979;	Tsou	&	Collie,	2001)	to	more	complex	multispecies	statistical	
catch-at-age	 models	 (Curti,	 Collie,	 Legault,	 &	 Link,	 2013;	 Jurado-
Molina,	 Livingston,	&	 Ianelli,	 2005;	Kinzey	&	Punt,	 2009;	 Lewy	&	
Vinther,	 2004).	 Among	 these	models,	multispecies	 age-structured	
assessments	are	of	particular	interest	since	age	information	is	often	
available	and	many	stock	assessments	are	structured	by	age.	These	
multispecies	 models	 follow	 the	 concept	 of	 MSVPA	 that	 emerged	
in	 the	 late	 1970s	with	Andersen	 and	Ursin	 (1977).	However,	mul-
tispecies	 age-structured	models	 are	 still	 rarely	used	 to	 assess	 fish	
stocks.	For	instance,	in	the	North	Atlantic,	the	stochastic	multispe-
cies	model	(SMS)	developed	by	Lewy	and	Vinther	(2004)	is	currently	
used	 for	management	 advice,	 by	 providing	 values	 of	 natural	mor-
tality	 to	North	Sea	and	Baltic	Sea	single	species	stock	assessment	
models	(ICES,	2018)	but	is	not	directly	used	as	the	assessment	model	
for	these	species.

In	addition	to	multispecies	models,	 there	 is	an	 incentive	to	de-
velop	state-space	stock	assessment	models	that	account	for	uncer-
tainty	in	sampling	that	generates	observations	(observations	errors)	
and	also	in	unobserved	biological	processes	responsible	for	stochas-
tic	changes	in	the	population	over	time	(process	errors).	These	state-
space	models	treat	the	process	errors	as	random	effects	which	are	
integrated	out	 to	estimate	 fixed	effects	parameters	 from	the	mar-
ginal	 likelihood	of	 the	observations	 (Aeberhard,	Mills	Flemming,	&	
Nielsen,	2018).	By	estimating	both	types	of	errors,	these	state-space	
models	become	a	more	realistic	 illustration	of	the	uncertainty	that	
exists	in	our	understanding	of	the	fisheries	systems.	Despite	the	fact	
that	 state-space	 single	 species	 assessments	 are	becoming	popular	
and	easy	to	implement	(Berg	&	Nielsen,	2016;	Miller,	Hare,	&	Alade,	
2016;	Nielsen	&	Berg,	2014),	many	stock	assessments	are	still	based	
on	models	 that	 ignore	process	errors	or	 treat	 them	as	 fixed	varia-
tions.	State-space	multispecies	fisheries	assessments	are	even	less	
common.

Here,	 we	 investigate	 how	 ignoring	 process	 errors	 and	 trophic	
interactions	affects	stock	assessment	model	performance	and	fish-
eries	management.	A	simulation	study	was	conducted	using	the	mul-
tispecies	stock	assessment	model	of	Trijoulet,	Fay,	Curti,	Smith,	and	

remember	that,	if	predation	is	large,	assuming	a	constant	mortality	over	time	and/
or	age	could	have	 large	consequences	on	 stock	perception	and	 reference	point	
estimates	and	affect	resulting	management	advice.

K E Y W O R D S
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Miller	(2019)	extended	to	account	for	process	errors	in	recruitment	
and	 fish	abundance	at	age.	The	model	was	used	 to	 simulate	data-
sets	 that	were	 then	 fitted	 to	 four	estimation	models	 that	differed	
in	whether	they	accounted	for	predation	and	process	errors.	Model	
performance	 was	 determined	 by	 calculating	 relative	 differences	
between	true	and	estimated	values.	Fits	to	the	data	and	predictive	
ability	 of	 the	models	 were	 analysed.	 The	 consequences	 of	model	
assumptions	on	the	estimation	of	absolute	and	relative	proxy	refer-
ence	points	were	also	evaluated.

2  | MATERIAL S AND METHODS

2.1 | State‐space multispecies operating model

The	study	used	the	multispecies	age-structured	model	presented	in	
Trijoulet,	Fay,	Curti,	et	al.	(2019)	and	developed	in	Template	Model	
Builder	(TMB;	Kristensen,	Nielsen,	Berg,	Skaug,	&	Bell,	2016).	It	was	
applied	to	two	fish	species,	modelled	to	be	characteristic	of	Georges	
Bank	 Atlantic	 cod	 (Gadus morhua;	 Northeast	 Fisheries	 Science	
Center,	 2015)	 and	 Northwest	 Atlantic	 herring	 (Clupea harengus; 
Deroba,	2015).	Cod	 is	 assumed	 to	prey	on	both	herring	and	 small	
cod.	The	model	equations	are	summarized	in	Table	1	and	the	model	
settings	in	the	Supporting	information	(part	1).	Trophic	interactions	
were	assumed	to	be	large	between	the	predator	and	the	prey	as	il-
lustrated	in	Supporting	information	(part	2).

The	model	of	Trijoulet,	Fay,	Curti,	et	al.	(2019)	was	extended	to	
include	process	errors	on	recruitment	at	age	1	and	annual	fish	abun-
dance	at	age.	Annual	log-recruitment	for	species	i	was	assumed	to	be	

distributed	normally	with	mean	Ri and variance �2
Ri
	(Table	1,	equation	

T1.20).	The	process	error	in	log	abundance	was	a	random	walk	as-
sumed	 to	 follow	 a	 Normal	 distribution	with	 variance	�2

Ni

	 (Table	 1,	

equation	T1.21).
The	state-space	model	was	used	as	an	operating	model	(OM)	to	

simulate	1,000	datasets	of	observations	with	errors	on	the	annual	
total	fishing	catches	by	species,	annual	aggregated	(over	ages)	sur-
vey	 abundance	 indices,	 age	 composition	 of	 catch	 and	 survey	 and	
the	diet	of	predators.	Log	total	fishing	catches	and	indices	for	each	
species	were	 assumed	 normally	 distributed	 and	 age	 compositions	
for	both	were	assumed	multinomial	distributed	(Table	1,	equations	
T1.15	 to	 T1.18).	 The	 diet	 data	 were	 composed	 of	 proportions	 of	
prey	by	weight	in	the	stomach	of	the	predator	and	were	generated	
per	predator	age	and	year	(EM2	in	Trijoulet,	Fay,	Curti,	et	al.,	2019)	
and	these	were	assumed	to	follow	a	Dirichlet	distribution	(Table	1,	
equation	T1.19).	Process	errors	in	recruitment	and	abundance	were	
simulated	as	per	equations	T1.20	and	T1.21.

2.2 | Estimation models

The	study	considered	four	estimation	models	(EMs)	to	be	used	for	
tactical	management:

EM1:	 state-space	multispecies	model	estimating	fishing,	preda-
tion	and	residual	natural	mortality.	It	has	the	same	configuration	as	

the	 operating	model	 and	 estimates	 process	 errors	 on	 recruitment	
and	fish	abundance.

EM2:	multispecies	statistical	catch-at-age	model	estimating	fish-
ing,	 predation	 and	 residual	 natural	mortality.	 Process	 errors	were	
not	accounted	for	in	this	model	so	changes	in	fish	abundance	were	
assumed	deterministic	and	annual	values	of	recruitment	were	esti-
mated	with	no	distributional	constraint.	This	model	allows	investiga-
tion	of	how	ignoring	process	error	in	stock	assessment	may	impact	
model	performance.

For	 EM1	and	EM2,	 diet	 data	were	 fitted	using	 equation	T1.19	
where	diet	observations	were	annual	proportions	of	prey	(in	weight)	
present	in	the	diet	of	cod	and	given	for	each	predator	age.

EM3:	 state-space	 model	 assuming	 total	 natural	 mortality	 con-
stant	across	ages	and	time.	Trophic	interactions	were	not	explicitly	
estimated,	so	the	estimate	of	total	natural	mortality	from	this	model	
corresponds	to	M + P.	This	model	investigates	the	consequences	of	
ignoring	predation	and	assuming	that	natural	mortality	 is	constant	
over	age	and	time,	an	assumption	commonly	made	in	stock	assess-
ment	practice	(Northeast	Fisheries	Science	Center,	2015),	with	the	
exception	that	M	is	estimated	here	while	it	is	often	fixed	at	a	known	
value	in	stock	assessments.

EM4:	state-space	model	estimating	age-varying	natural	mortal-
ity.	The	natural	mortality	was	assumed	to	follow	an	allometric	rela-
tionship	with	weight	at	age	(Lorenzen,	1996;	Peterson	&	Wroblewski,	
1984;	Ursin,	 1967)	 and	with	 parameters	 of	 this	 relationship	 being	
estimated	(α and β	in	Equation	1).

To	aid	the	estimation	of	natural	mortality,	prior	distributions	pa-
rameterized	using	estimates	in	Lorenzen	(1996)	were	used:

EM4	 investigates	 how	 not	 explicitly	 accounting	 for	 predation	
could	 impact	 model	 performance	 when	 age-varying	 total	 natural	
mortality	(M + P)	is	still	estimated.	Assuming	Equation	(1)	forces	nat-
ural	mortality	to	decrease	with	fish	age	which	most	resembles	the	
shape	of	M + P	 in	the	simulated	datasets	(higher	predation	mortal-
ity	on	younger	fish).	An	allometric	M	is	sometimes	used	in	stock	as-
sessment	but	α and β	are	usually	fixed	at	the	Lorenzen	values	rather	
than	estimated	(ICES,	2017).	For	simplicity,	in	all	models,	the	annual	
weight	at	age	of	both	fish	species	was	constant	over	time	and	given	
by	the	averaged	weight	over	time	from	the	recent	stock	assessments	
for	each	species	(Deroba,	2015,	Northeast	Fisheries	Science	Center,	
2015).	This	resulted	in	an	estimated	M	at	age	constant	over	time	for	
EM4.

Given	that	predation	mortality	in	the	simulated	datasets	varies	per	
age	and	over	time,	the	EMs	3	and	4	are	expected	to	show	some	bias	
due	to	misspecification	of	the	total	natural	mortality	but,	whether	the	

(1)Ma,i=�iw
�i

a,i

(2)�i∼

(

3.69, 0.52
)

(3)�i∼

(

−0.305, 0.0282
)
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TA B L E  1  Equations	of	the	operating	multispecies	model

Number Name Equation Comments

Structural	model

T1.1 Predicted	number	at	age	a and 
year t	of	fish	species	 i

N̂t+1,a+1,i=Nt,a,ie
−Zt,a,i

N̂t+1,Ai ,i
=Nt,Ai ,i

e−Zt,Ai ,i +Nt+1,Ai ,i
e−Zt+1,Ai ,i

A	is	the	age	plus	group.	Numbers	at	age	
in	the	1st	year	N̂t=1,a,i	are	estimated	
parameters

T1.2 Total	mortality Zt,ai=Ft,a,i+Mi+Pt,a,i M	is	the	residual	natural	mortality

T1.3 Fishing	mortality Ft,a,i= fts
F
a,i

f 	is	the	freely	estimated	fully	selected	
fishing	mortality

T1.4 Fishing	selectivity sF
a,i
=

1

1+e

(

−

(

ai−A50
F
i

�Fi

))

Logistic	form	where	�F and A50F	are	esti-
mated	parameters	on	a	logit	scale

T1.5 Predation	mortality
Pt,a,i=

B
∑

b=1

�

cons_ratebNt,b

�t,a,i,b
∑I

i=1

∑Ai

a=1
�t,a,i,b+�othert,b

� cons_rate	is	the	per-capita	consumption	
rate	of	cod	of	age	b	and	maximum	age	
B	and	is	given	in	Trijoulet,	Fay,	Curti,	et	
al.	(2019)

T1.6 Biomass	of	modelled	prey	
available	to	cod

�t,a,i,b=�t,a,i,bNt,a,iwt,a,i
 

T1.7 Prey	suitability
�t,a,i,b=�igt,a,i,b

�	is	the	estimated	prey	general	
vulnerability

T1.8 Cod	size	preference gt,a,i,b∼Gamma
(

log
(

wt,b

wt,a,i

)

, 0.552, 9.308
)

Gamma	distribution

T1.9 Biomass	of	other	food	
available

�othert,b
=�otherBother

Bother=15,000 t and �other=1−
I
∑

i=1

�i

T1.10 Predicted	survey	abundance	
index

Ît,a,i=qis
surv
a,i

Nt,a,ie
−𝜓tZt,a,i �	is	the	fraction	of	the	year	elapsed	when	

the	survey	takes	place

T1.11 Survey	catchability qi=
1

1+e− log it_qi

Freely	estimated

T1.12 Survey	selectivity ssurv
a,i

=
1

1+e

(

−

(

ai−A50
surv
i

�survi

))
Logistic	form	where	�surv and A50surv are 
estimated	parameters	on	a	logit	scale

T1.13 Predicted	fishing	catch Ĉt,a,i=
Ft,a,i

Zt,a,i
Nt,a,i

(

1−e−Zt,a,i
)

Baranov	equation

T1.14 Spawning	stock	biomass
SSBt,i =

Ai
∑

a=1

�

Nt,a,iw
SSB
t,a,i

matt,a,ie
−�iZt,a,i

� wSSB	is	the	observed	weight	in	the	spawn-
ing	stock	biomass	(SSB),	mat	is	the	
proportion	of	mature	fish	at	age	and	� 
is	the	fraction	of	the	year	elapsed	when	
the	spawning	takes	place

Likelihood	components

Observation errors

T1.15 Fit	to	observed	aggregated	
catch log

�

Ct,i

�

�Nt,a,i∼

�

log

�

Ai
∑

a=1

Ĉt,a,iwt,a,i

�

, 𝜎2
Ct,i

�

The	observation	variance	(�2
C
)	is	given	as	

input

T1.16 Fit	to	observed	aggregate	
survey	indices log

�

It,i,k
�

�Nt,a,i∼

�

log

�

Ai
∑

a=1

Ît,a,i,k

�

, 𝜎2
It,i,k

�

The	observation	variance	(�2
I
)	is	given	as	

input

T1.17 Fit	to	age	composition	in	
observed	catch

log

�

Ct,a,i

∑Ai

a=1
Ct,a,i

�

�Nt,a,i∼Multinom

�

log

�

Ĉt,a,i

∑Ai

a=1
Ĉt,a,i

��

Multinomial	distribution

T1.18 Fit	to	age	composition	in	
observed	survey	indices

log

�

It,a,i,k
∑Ai

a=1
It,a,i,k

�

�Nt,a,i∼Multinom

�

log

�

Ît,a,i,k
∑Ai

a=1
Ît,a,i,k

��

Multinomial	distribution

T1.19 Fit	to	prey	proportions	in	the	
diet	of	cod

∑An

a=1
�t,a,n,b

�othert,b
+

∑I

i=1

∑Ai

a=1
�t,a,i,b

∼Dirichlet

�

stomt,n,b
∑I+1

n=1
stomt,n,b

, �

�

n	is	the	index	for	prey	including	other	
food.	�	is	an	estimated	parameter

Process errors

T1.20 Random	recruitment log
(

Nt+1,a=1,i

)

∼

(

log
(

Ri

)

, �2
Ri

)

R	is	the	mean	recruitment	and	�2
R
	the	vari-

ance	around	the	mean

T1.21 Random	abundance	at	age log
(

Nt+1,a+1,i

)

|Nt,a,i∼

(

log
(

Nt,a,i

)

, �2
Ni

)

�2
N
	is	the	process	error	variance

The	values	in	comment	column	are	given	in	supporting	information
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performance	of	these	models	assuming	a	constant	natural	mortality	
across	time	(EM4)	and	ages	(EM3)	are	substantially	degraded	is	con-
sequential,	since	these	are	commonly	made	assumptions	in	practice.

Estimated	 parameters	 included	 fishing	 mortality	 parameters	
(fully	selected	annual	fishing	mortality	ft	and	parameters	governing	
selectivity	at	age	�F and A50F),	survey	abundance	index	parameters	
(survey	 catchability	 q	 and	 selectivity	 at	 age	 parameters,	 �surv and 
A50surv),	the	abundance	at	age	in	the	first	year	(N1,a,i),	the	predation	
parameters	 (general	 vulnerability	 �	 and	 Dirichlet	 distribution	 pa-
rameter	�),	annual	recruitment	at	age	1	(Nt,1,i;	EM2	only)	and	resid-
ual	natural	mortality	per	prey	 species	 (Mi,	 EM1–EM3)	or	 Lorenzen	
parameters	(α and β,	EM4).	With	M	being	held	constant	across	ages	
and	years	 in	 the	OM,	only	one	value	of	M	was	estimated	by	prey	
species	in	EM1–EM3.	Additional	estimated	parameters	in	EM1,	EM3	
and	EM4	included	mean	recruitment	(Ri),	standard	errors	(�Ri)	for	the	
recruitment	process,	the	matrix	of	numbers	at	age	(N̂)	and	standard	
errors	on	fish	abundance	(�Ni

).

2.3 | Sensitivity analyses

Two	sensitivity	analyses	were	carried	out.	First,	the	simulations	were	
run	assuming	a	constant	fully	selected	fishing	mortality	(f)	in	the	OM,	
which	resulted	in	a	constant	F	at	age	over	time,	to	see	how	having	
no	contrast	in	annual	fishing	mortality	may	impact	the	performance	
of	the	models.	Second,	we	explored	the	effect	of	misspecification	of	
the	process	error	structure.	In	the	OM	the	source	of	process	error	
with	 the	 largest	 variance	 is	 recruitment.	An	 additional	 EM	 (EM1b)	
was	fitted	to	the	1,000	simulated	datasets	where	recruitment	was	
assumed	to	follow	a	random	walk	with	estimated	variance	instead	of	
being	random	about	an	estimated	mean	(original	EM1).	This	model	
tests	if	misspecification	in	process	error	affects	bias	of	EM1.

2.4 | Convergence criteria and performance metrics

Each	EM	was	fitted	to	the	1,000	simulated	datasets.	Convergence	
was	diagnosed	by	a	maximum	gradient	component	less	than	0.0001	
and	a	positive	definite	hessian	matrix.

Median	relative	differences	(RD)	were	estimated	across	all	con-
verged	iterations	for	estimated	parameters	and	derived	outputs	(�̂�).

where	�	is	the	true	value	of	the	parameter	or	derived	output.	The	95%	
confidence	intervals	of	the	median	RD	were	estimated	using	the	bino-
mial	distribution	method	of	Thompson	(1936).

Diet	data	were	not	used	in	EM3	and	EM4,	so	the	EMs	were	not	com-
parable	using	selection	criteria	such	as	the	Akaike	information	criterion.	
Quality	of	fit	to	the	observed	data	was	assessed	by	taking	the	difference	
between	the	negative	log-likelihood	(NLL)	values	in	each	simulation	for	
EM1	and	the	NLLs	for	the	misspecified	models	(EM2–EM4).

A	model's	 ability	 to	provide	accurate	projections	of	 the	 stocks	
can	be	evaluated	by	studying	 the	predictive	ability	of	 the	models.	
The	 EMs	were	 run	 omitting	 the	 observed	 aggregated	 indices	 and	

their	corresponding	age	composition	in	the	last	5	years	of	the	time	
series.	Predictions	were	compared	to	the	missing	observations	using	
Equation	 (4)	 for	 the	 four	EMs.	Models	 that	 show	 the	 least	 bias	 in	
predicted	indices	should	provide	most	robust	forecasts.

Only	the	converged	outputs	were	kept	for	analysis,	resulting	be-
tween	293	and	931	iterations	depending	on	the	EM.	It	was	chosen	
not	to	run	more	simulations	even	if	the	number	of	convergences	was	
low	 so	 that	 all	models	used	 the	 same	datasets.	A	 sensitivity	 anal-
ysis	 running	more	 simulations	 to	obtain	1,000	converged	 runs	 for	
the	EMs	that	resulted	in	the	smallest	number	of	convergences	gave	
median	RD	values	similar	to	the	original	outputs	(results	not	shown).	
The	 number	 of	 convergences	 only	 affected	 the	 size	 of	 the	 confi-
dence	interval	around	the	median	RD.

2.5 | Proxy reference point estimation

Since	 the	models	 did	 not	 estimate	 a	 stock	 recruitment	 relation-
ship,	 the	 impact	 of	 considering	 trophic	 interactions	 and	 process	
errors	on	reference	point	estimates	was	 investigated	by	estimat-
ing	a	proxy	reference	point,	unfished	biomass	(B0).	For	each	model	
and	 each	 iteration	 (OM	 and	 EMs),	 equilibrium	 unfished	 biomass	
was	obtained	by	projecting	both	stocks	forward	for	an	additional	
500	years	with	F=0	and	with	the	same	assumptions	 in	the	fore-
casts	as	in	the	models	(e.g.	for	the	multispecies	state-space	EM1,	
random	walk	on	recruitment	was	assumed	in	the	forecast	given	the	
mean	 and	 standard	 deviation	 estimates	 for	 each	 EM1	 iteration).	
Input	values	such	as	mean	weight	at	age	were	set	as	the	average	
over	the	42	years	used	in	the	simulated	datasets.	For	EM2,	fore-
cast	recruitment	was	the	average	over	the	42	years	and	assumed	
constant.	Unfished	biomass	was	estimated	by	taking	the	average	
spawning	stock	biomass	 (SSB)	over	years	400–500.	For	the	mul-
tispecies	 models,	 the	 prey	 abundances	 depend	 on	 the	 predator	
abundance	so	both	stocks	oscillate	around	an	equilibrium	rather	
than	 approaching	 a	 constant	 SSB	 value.	 Unfished	 biomass	 cor-
responds	therefore	to	this	equilibrium.	To	 limit	variability	due	to	
process	errors	in	the	forecasts,	for	the	models	with	process	errors	
(OM,	EM1,	EM3	and	EM4),	100	runs	were	made	for	each	iteration	
and B0	was	calculated	as	the	average	over	these	100	iterations.	To	
keep	consistency	 in	the	forecasts	for	all	models,	we	also	ran	the	
same	simulations	with	no	process	error	in	the	projections.

For	each	 iteration,	 the	relative	differences	were	calculated	be-
tween	B0	estimated	in	the	forecasts	with	the	OM	with	B0	in	the	EMs’	
forecasts	to	see	how	the	EMs	performed	regarding	the	estimation	
of	the	absolute	reference	point.	Bias	on	a	relative	scale	was	also	cal-
culated	by	taking	the	ratio	between	the	last	estimated	SSB	(SSBy=42

)	and	B0	in	the	forecasts	for	each	model	iteration.	These	ratios	were	
compared	to	the	same	ratios	obtained	in	the	OM	to	assess	possible	
bias	in	estimation	of	relative	reference	point.

To	 understand	 the	 trade-offs	 associated	 with	 fishing	 op-
portunities	 in	 a	 multispecies	 context,	 we	 also	 investigated	 how	
equilibrium	 SSB	 estimates	 varied	 compared	 to	 B0	 for	 different	
combinations	of	fishing	mortality	on	both	species	for	the	OM.	We	
used	F	 multipliers	 between	 0	 and	 2	 with	 a	 step	 of	 0.1	 on	 both	

(4)RD=

�̂�

𝜃
−1
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species	(for	a	total	of	441	combinations	of	F	on	cod	and	herring)	
and	projected	the	stocks	forward	for	500	more	years.	As	for	pre-
vious	projections,	 process	 errors	 on	 recruitment	 and	 abundance	
at	age	were	assumed	in	the	forecasts	and	100	iterations	were	run	
per F	combination.	We	looked	at	how	the	ratios	of	equilibrium	SSB	
for	each	F	combination	(average	years	400–500)	against	B0 varied 
with	changes	in	F	for	both	species.

3  | RESULTS

The	convergence	rate	varied	considerably	among	the	EMs	(Table	2).	
EM2	 converged	 most	 frequently	 followed	 by	 EM1.	 The	 EMs	 not	
explicitly	accounting	for	predation	(EM3	and	EM4)	had	low	conver-
gence	rates.

EM1,	which	had	the	same	configuration	as	the	OM,	performed	
best	in	estimating	the	parameters	with	a	maximum	bias	around	−0.4%	
for	cod	catchability	(q,	Figure	1).	The	numbers	at	age	in	the	first	year	
were	slightly	underestimated	with	a	maximum	bias	of	−6%	(Figure	2).	
Assuming	deterministic	 recruitment	and	change	 in	 fish	abundance	
(EM2)	increased	the	bias	compared	to	EM1,	notably	in	survey	catch-
ability	for	both	species	but	the	bias	was	below	3%	for	all	parameters.	
Numbers	of	fish	in	the	first	year	were	underestimated	with	bias	be-
tween	−2%	and	−8%.	When	predation	was	not	explicitly	estimated	
(EM3	and	EM4),	estimation	bias	increased	for	most	parameters,	from	
2%	to	52%	for	EM3	and	2%	to	220%	for	EM4	(Figure	1).	The	largest	
bias	observed	was	in	estimates	of	cod	mean	recruitment	and	herring	
catchability	 for	EM3	 (−38%	and	−52%	 respectively)	 and	 in	herring	
catchability	and	mean	recruitment	for	EM4	(−47%	and	220%	respec-
tively).	EM3	overestimated	fish	numbers	in	the	first	year,	notably	for	
herring	where	the	bias	reached	336%	(Figure	2).	Numbers	at	age	in	
the	first	year	were	overestimated	for	cod	(up	to	46%)	and	herring	(up	
to	442%)	when	M	was	modelled	as	a	function	of	fish	weight	(EM4).

Negative	bias	in	maximum	likelihood	estimates	of	process	error	
variances	is	expected.	Here,	EM1	underestimated	the	variance	in	an-
nual	abundance	at	age	for	cod	and	herring	(−27%	and	−34%	respec-
tively,	 Figure	 3).	 Variance	 of	 annual	 recruitment	 was	 only	 slightly	

TA B L E  2  Convergence	rate	in	percent	for	each	estimation	
models

EM1 EM2 EM3 EM4

77.5 93.1 30.7 29.3

F I G U R E  1  Median	relative	differences	and	95%	confidence	interval	for	some	estimated	parameters.	Each	plot	corresponds	to	a	specific	
estimation	model	(EM).	Note	the	change	in	the	y-axis
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underestimated	 (2%–3%	 for	 both	 species).	 However,	 the	 models	
ignoring	predation	overestimated	the	variance	in	process	errors	on	
the	abundance	at	age	for	herring	and	recruitment	variance	for	both	
species.	Variance	of	the	process	error	on	the	abundance	at	age	for	
cod	for	both	EM3	and	EM4	was	estimated	to	be	close	to	zero.

Spawning	 stock	biomass	 (SSB)	 and	 recruitment	were	well-esti-
mated	 for	 EM1	 and	 the	 bias	 slightly	 increased	 below	−1%–2%	 for	
SSB	and	−3%	for	recruitment	with	EM2	(Figure	4).	Estimation	bias	
increased	substantially	for	EM3	and	EM4	and	was	maximal	for	her-
ring	with	a	bias	in	SSB	and	recruitment	of	23%–100%	for	EM3	and	
73%–229%	for	EM4.

As	 expected,	 EM1	 showed	 the	 smallest	 bias	 in	 estimated	
mortality	rates,	with	these	being	well-estimated	for	both	species	
(Figure	 5).	 The	 largest	 bias	was	 for	 cod	 residual	 natural	mortal-
ity	and	was	around	1.4%.	 Ignoring	process	errors	 (EM2)	 induced	
a	larger	bias	in	estimated	M	of	around	−5%	for	cod	and	−5.6%	for	
herring.	As	a	result,	fishing	and	predation	mortality	were	slightly	
overestimated	for	both	species.	Not	explicitly	accounting	for	pre-
dation	(EM3	and	EM4)	had	the	largest	impact	on	estimation	bias,	
most	 notably	 for	 herring	 where	 F	 was	 underestimated	 (median	
around	−50%)	 and	M	 overestimated	 (around	23%)	 for	 both	EM3	
and	EM4.

On	average,	EM2	presented	larger	NLLs	than	EM1	for	all	types	
of	observed	data	demonstrating	 that	EM1	 fitted	 the	data	better	
than	EM2	(Figure	6).	However,	EM3	and	EM4	fitted	the	aggregated	

F I G U R E  2  Median	relative	differences	and	95%	confidence	interval	for	estimated	numbers	of	fish	at	age	in	the	first	year	of	simulation.	
Each	plot	corresponds	to	a	specific	estimation	model	(EM).	Note	the	change	in	the	y-axis
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interval	for	the	estimated	process	error	variances	in	abundance	at	
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F I G U R E  4  Median	relative	differences	in	spawning	stock	biomass	(SSB)	and	recruitment	(R).	Annual	values	of	SSB	and	recruitment	are	
aggregated	within	each	boxplot.	Note	the	change	in	the	y-axis
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F I G U R E  5  Median	relative	differences	in	estimated	fishing	mortality	(F),	predation	mortality	(P)	and	residual	natural	mortality	(M).	Year	
and	age	component	are	aggregated	within	the	boxplot.	For	EM1	and	EM2,	M	is	given	as	median	relative	difference	with	95%	confidence	
interval	because	only	one	value	is	estimated	per	EM	(M	constant	across	age	and	time).	For	EM3	and	EM4,	predation	is	not	explicitly	
estimated	so	the	value	for	M	is	compared	to	M + P.	Note	the	change	in	the	y-axis

−0
.0

6
−0

.0
2

0.
02

Cod
Herring

−1
.0

−0
.5

0.
0

0.
5

1.
0

F P M F P M F P M F P M

R
el

at
iv

e 
di

ffe
re

nc
e

EM1 EM2

EM3 EM4



     |  129Journal of Applied EcologyTRIJOULET ET aL.

catch	and	the	age	compositions	for	the	catch	and	surveys	better	
than	EM1.

EM1	 and	 EM2	were	 robust	 in	 predicting	 the	 observed	 values	
for	survey	indices	in	the	last	5	years	of	the	times	series	despite	the	
absence	of	data	on	aggregated	 indices	 and	 their	 age	 composition,	

with	a	difference	between	observed	and	predicted	indices	below	2%	
(Figure	7).	However,	when	predation	was	ignored,	bias	in	predicted	
indices	increased	in	the	last	years	of	the	time	series	as	did	the	un-
certainty	around	the	median	estimates.	As	a	result,	EM3	and	EM4	
present	a	clear	 increase	 in	bias	 in	predicted	SSB	at	 the	end	of	 the	

F I G U R E  6  Distributions	of	differences	between	negative	log-likelihood	(NLL)	values	for	EM1	with	NLLs	for	EM2,	EM3	and	EM4,	for	all	
converged	iterations	and	for	each	observation	component.	Positive	values	represent	an	improvement	in	fit	and	inversely.	The	grey	dashed	
line	shows	the	distribution	median
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F I G U R E  7  Median	relative	difference	and	95%	confidence	interval	in	the	last	10	years	of	aggregated	survey	indices	for	the	simulations	
where	the	last	5	years	of	observed	survey	indices	were	not	included	in	the	model	fitting	procedure.	Note	the	change	in	the	y-axis
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F I G U R E  8  Median	relative	difference	and	95%	confidence	interval	in	the	last	10	years	of	spawning	stock	biomass	for	the	simulations	
where	the	last	5	years	of	observed	survey	indices	were	not	included	in	the	model	fitting	procedure.	Note	the	change	in	the	y-axis
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time	series	while	bias	was	still	low	for	this	period	in	EM1	and	EM2	
(Figure	8).

When	 f	 was	 held	 constant	 over	 time	 in	 the	 OM,	 only	 EM1	
showed	a	small	bias	 in	estimated	parameters	and	derived	outputs	
(Supporting	information,	part	3.1).	Bias	in	EM1	and	EM2	increased	
compared	to	the	original	results	 (Figures	S4–S8),	with	parameters	
and	derived	outputs	 that	were	 slightly	biased	 in	 the	original	 sim-
ulations	having	 larger	bias.	The	bias	 in	estimates	of	M	went	 from	
5%–6%	 to	11%–17%	 for	EM2	 (Figure	S8)	 and	bias	 in	SSB	and	 re-
cruitment	from	1%–2%	to	>6%	and	from	3%	to	>10%,	respectively	
(Figure	S7).	For	EM4,	no	contrast	 in	F	at	age	over	time	in	the	OM	
had	the	opposite	effect	(smaller	bias	than	original	simulations)	but	
the	bias	was	still	larger	than	that	obtained	for	EM1	and	EM2,	with	
0%–60%	 bias	 in	 parameter	 estimates	 (Figures	 S4–S5)	 and	 20%–
60%	bias	in	SSB	and	recruitment	(Figure	S7).	For	EM3,	no	contrast	
in F	over	time	led	to	an	inability	to	estimate	true	values	for	herring	
recruitment	 (Figure	S7)	and	mortality	 (Figure	S8).	F	was	overesti-
mated	and	M	was	reduced	to	0.

Misspecifying	recruitment	process	error	in	EM1b	had	a	small	
effect	 on	 estimation	 bias	 (Supporting	 information,	 part	 3.2).	
Biases	 in	 herring	 SSB,	 recruitment	 (Figure	 S11)	 and	 mortality	
rates	(Figure	S12)	increased	slightly	compared	to	EM1	but	overall	

were	similar.	Bias	in	all	parameters	and	outputs	were	smaller	than	
for	EM2.

Bias	in	absolute	(B0)	and	relative	(SSBy=42

/

B0)	reference	points	
was	largest	for	the	single	species	models	(EM3	and	EM4,	Figure	9).	
Bias	was	also	large	for	EM2	(≃20%)	compared	to	EM1	because	of	
the	 absence	 of	 process	 errors	 in	 the	 forecasts	 compared	 to	 the	
OM,	inducing	a	change	in	the	assumption	about	recruitment.	The	
bias	was	largely	reduced	for	EM2	when	no	process	error	was	as-
sumed	in	the	forecasts	for	all	models	(Supporting	information,	part	
4,	Figure	S13).

Increasing	F	on	cod	or	herring	reduced	the	equilibrium	SSB	for	
the	respective	species	(Figure	10).	However,	increased	F	on	herring	
did	not	affect	equilibrium	unfished	cod	SSB	and	increased	F on cod 
increased	equilibrium	unfished	herring	SSB	(ratio	>	1)	faster	than	the	
decrease	in	herring	SSB	when	F	increased	on	herring.

4  | DISCUSSION

Modelling	 predator–prey	 interactions	 and	 predator	 impacts	 on	
prey	 abundance	 has	 been	 proven	 important	 in	 systems	 outside	
of	 marine	 fisheries	 including	 terrestrial	 environments	 (Hanski,	

F I G U R E  9  Median	relative	difference	and	95%	confidence	interval	for	the	absolute	unfished	biomass	(B0)	and	relative	(SSBy=42

/

B0)	
reference	point	estimates	when	process	errors	were	assumed	in	the	forecasts	for	OM,	EM1,	EM3	and	EM4
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Henttonen,	 Korpimäki,	 Oksanen,	 &	 Turchin,	 2001;	 Owen-Smith	
&	Mills,	2008),	aquatic	systems	 (Tsehaye	et	al.,	2014)	and	across	
ecosystems	(Knight,	McCoy,	Chase,	McCoy,	&	Holt,	2005).	Here,	
we	 show	 that	 ignoring	 trophic	 interactions	 in	 fisheries	 stock	 as-
sessment	models	(EM3	and	EM4)	when	these	are	strong	can	bias	
estimates	of	dynamics	and	population	parameters	and	can	result	
in	 low	model	 predictive	 ability.	 These	 biases	 could	 affect	 stock	
management	 as	 they	 result	 in	 biased	 reference	 point	 estimates	
on	both	 absolute	 and	 relative	 scales.	Assuming	 a	 known	natural	
mortality	 fixed	 as	 constant	 over	 time	 and	 sometimes	 ages	 is	 a	
common	approach	used	in	stock	assessment	(Johnson	et	al.,	2015;	
Lee,	Maunder,	Piner,	&	Methot,	2011;	Miller	&	Hyun,	2018).	 It	 is	
therefore	 important	to	know	that,	despite	a	fit	 to	observed	data	
that	could	be	perceived	as	reasonable	(Figure	6),	misspecifications	
of	 natural	mortality	 can	 affect	 the	 perception	 of	 fish	 stock	 sta-
tus	 irrespective	of	harvest	history	 (EM3	and	EM4	had	 large	bias	
for	both	constant	and	varying	F),	and	the	consequences	of	these	
changes	in	perception	on	catch	advice	can	be	great.

By	 estimating	 process	 errors,	 state-space	 models	 could	 poten-
tially	 compensate	 for	 ignoring	unobserved	variability	due	 to	preda-
tion.	However,	our	results	suggest	that	models	that	did	not	explicitly	
account	for	trophic	 interactions	(EM3	and	EM4)	were	unable	to	get	
consistent	process	error	estimates	and	to	differentiate	between	pro-
cess	errors	on	abundance	and	recruitment.	Using	state-space	models	
to	model	unobserved	mortality	such	as	predation	and	residual	natural	
mortality	was	not	sufficient	to	limit	bias.	These	misspecified	models	
also	resulted	in	the	lowest	convergence	rates	illustrating	the	difficulty	
in	estimating	parameters	when	natural	mortality	is	misspecified.	The	
role	of	observed	data	and	assumptions	on	natural	mortality	in	the	abil-
ity	of	models	to	distinguish	among	sources	of	variability	in	population	
dynamics	processes	should	be	an	area	for	future	work.

Most	stock	assessment	models	assume	deterministic	processes	
(Dichmont	 et	 al.,	 2016).	 Here,	 we	 showed	 that	 ignoring	 process	

errors	in	a	multispecies	context	(EM2)	had	a	small	impact	on	model	
performance,	 while	 providing	 a	 high	 convergence	 rate	 (Table	 2).	
Ignoring	process	errors	induced	relatively	low	bias	in	parameter	es-
timation	when	annual	contrasts	in	fishing	mortality	were	assumed.	
Low	bias	was	also	observed	in	reference	point	estimation	when	the	
forecast	assumptions	were	the	same	as	in	the	OM.	However,	these	
biases	may	increase	if	no	contrast	exists	between	the	different	mor-
tality	rates,	likely	due	to	difficulty	in	partitioning	total	mortality	into	
the	different	mortality	rates	when	there	is	little	contrast	in	mortality	
rates	and	process	errors	are	ignored.	Bias	in	proxy	reference	point	
estimates	also	increased	when	compared	to	the	OM	forecasts	that	
accounted	for	unobserved	variability	in	both	stocks.	This	was	mainly	
due	 to	 the	 difference	 in	 recruitment	 assumption,	 which	 matters	
when	forecasting	fish	stocks.	Estimating	process	errors	in	fisheries	
models	 should	 result	 in	more	 robust	 parameters	 and	 derived	 out-
puts	(Aeberhard	et	al.,	2018)	even	if	process	errors	are	misspecified	
or	 their	variances	underestimated	 (EM1,	EM1b)	because	this	more	
closely	reflects	the	emergent	complexity	of	the	biological	processes	
in	fisheries	ecosystems.

Statistics	derived	from	likelihood	values	are	commonly	used	for	
model	selection,	e.g.	Akaike	 information	criterion	and	Bayesian	 in-
formation	criterion	(Akaike,	1987;	Schwarz,	1978).	Here,	we	showed	
that	looking	solely	at	likelihood	values	to	choose	the	best	model	can	
be	misleading	since	misspecified	models	(EM3	and	EM4)	may	over-
fit	 the	observations	 and	perform	poorly	 at	 predicting	unobserved	
data.	Models	 that	 overfit	 the	 data	 were	 imprecise	 at	 forecasting,	
with	large	consequences	for	fisheries	management	if	they	were	cho-
sen	 as	 the	 basis	 for	 advice,	 since	 reference	 point	 estimates	 could	
be	incorrect	on	both	the	absolute	and	relative	scale.	In	practice,	an	
analyst	does	not	know	which	of	a	set	of	models	best	represents	the	
system	being	observed	and	the	goal	of	model	selection	is	to	deter-
mine	which	of	the	set	does	this.	EM3	and	EM4	fit	the	observed	data	
best	for	three	of	the	four	data	types	despite	misspecification	in	M. In 

F I G U R E  1 0  Ratio	of	equilibrium	
spawning	stock	biomass	against	B0	for	
both	species	as	a	function	of	change	in	
fishing	mortality	on	both	stocks	for	the	
OM

 0.55 

 0.6 

 0.65 

 0.7 

 0.75 

 0.8 

 0.85 
 0.9 

 0.95 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

 0.2 

 0
.4

 
 0

.6
 

 0.8 

 1  1.2 

 1.4 

 1.6  1.8 

 2  2.2  2.4 

0.0 0.5 1.0 1.5 2.0
Multiplier on cod fishing mortality

M
ul

tip
lie

r o
n 

he
rr

in
g 

fis
hi

ng
 m

or
ta

lit
y

Cod Herring



     |  133Journal of Applied EcologyTRIJOULET ET aL.

this	particular	case,	it	was	important	to	check	the	predictive	ability	
of	the	models,	which	was	very	poor,	to	reject	both	models	for	pro-
viding	management	advice.

Multispecies	fisheries	models	have	been	recognized	to	improve	
estimates	of	natural	mortality	and	recruitment	and	provide	a	frame-
work	 for	 ecosystem-based	 management	 (Hollowed	 et	 al.,	 2000;	
Plagányi,	2007).	Here,	multispecies	models	(EM1	and	EM2)	provided	
robust	outputs	and	outperformed	single	species	models	 (EM3	and	
EM4).	Predictive	ability	of	 the	models	and	estimation	of	reference	
points	were	also	improved	in	the	multispecies	cases.	However,	de-
fining	optimal	yield	for	fisheries	is	not	straightforward	in	multispe-
cies	models	(Fogarty,	2013;	Moffitt	et	al.,	2016).	It	 is	not	generally	
possible	 to	 maximize	 the	 yield	 of	 several	 species	 simultaneously,	
and	maximizing	an	aggregate	yield	can	lead	to	complete	collapse	of	
one	or	more	species	(Gaichas	et	al.,	2012).	Even	our	relatively	simple	
forecasts	 of	 a	 two-species	 system	 without	 stock-recruit	 relation-
ships	illustrate	this	difficulty	(Figure	10).	Methods	for	determining,	
communicating	and	visualizing	the	trade-offs	associated	with	multi-
species	reference	points	are	needed	to	improve	our	understanding	
of	the	consequences	of	considering	trophic	interactions	on	the	man-
agement	of	natural	resources.

The	state-space	multispecies	model	developed	in	this	study	and	
extended	 from	 the	 statistical	 catch-at-age	model	 of	 Trijoulet,	 Fay,	
Curti,	et	al.	(2019)	was	proven	a	consistent	tool	to	assess	fish	stocks	
in	a	stochastic	multispecies	context.	 Indeed,	 the	estimation	model	
that	shared	the	OM	configuration	(EM1)	showed	little	bias	in	all	pa-
rameters	and	derived	outputs	and	was	robust	in	estimating	fishing,	
predation,	and	 residual	natural	mortality	even	when	process	error	
on	recruitment	was	misspecified	(EM1b).	The	maximum	bias	was	on	
the	variance	of	the	process	errors	on	fish	abundance	(≃−30%),	larger	
than	 bias	 in	 recruitment	 process	 error	 standard	 deviation	 (≃−3%).	
Underestimating	 process	 error	 variances	 is	 common	 in	 simulation	
testing	and	larger	underestimation	of	variance	in	process	errors	on	
fish	abundance	compared	to	recruitment	was	also	observed	in	state-
space	single	species	models	(Miller	&	Hyun,	2018).	Auger-Méthé	et	
al.	(2016)	demonstrated	that	estimation	bias	can	occur	when	obser-
vation	errors	are	larger	than	process	errors.	Here,	this	was	the	case	
for	process	errors	on	fish	abundance	but	not	for	process	errors	on	
recruitment,	and	this	could	explain	the	observed	difference	in	bias.

For	the	models	not	explicitly	accounting	for	predation	 (EM3	and	
EM4),	parameter	bias	was	generally	larger	for	herring	than	for	cod.	This	
was	because	predation	is	highest	on	herring	compared	to	cod	and	mis-
specifiying	total	natural	mortality	(M + P)	on	this	stock	will	have	larger	
impact	 than	misspecifying	 it	 for	cod.	Estimating	 time	or	age-varying	
mortality	might	be	expected	 to	 result	 in	better	performance	 than	a	
constant	value	across	ages	and	over	time.	In	our	study,	one	would	ex-
pect	EM4	to	be	a	better	model	than	EM3,	since	EM4	accounts	at	least	
for	age-varying	total	natural	mortality.	However,	EM4	showed	the	larg-
est	bias.	Similarly,	constant	natural	mortality	gave	better	results	than	
age-varying	mortality	in	state-space	single	species	assessment	(Miller	
&	Hyun,	2018).	Deroba	and	Schueller	(2013)	also	concluded	that	mis-
specification	of	temporal	variations	in	M	results	in	more	bias	than	vari-
ation	with	age	for	single	species	statistical	catch-at-age	models,	when	

M	is	assumed	known.	This	could	also	be	the	case	in	our	example,	but	
it	was	not	possible	to	estimate	time-varying	M	with	our	EMs	(only	five	
convergences	over	1,000	iterations).	Temporal	variation	in	M	was	esti-
mated	in	Johnson	et	al.	(2015),	but	M	in	their	OM	was	constant	across	
ages.	While	it	may	be	possible	to	estimate	a	constant	M	in	assessment	
models,	 if	M	 varies	 over	 time	 and	 ages	 the	 task	 seems	 difficult	 to	
achieve	without	data	to	inform	it.

Ignoring	trophic	interactions	may	have	large	consequences	in	stock	
assessments	but	modelling	predation	is	often	compromised	by	paucity	
of	diet	data.	While	stomach	content	data	have	been	collected	annu-
ally	in	the	Northeast	US	since	1973	(Smith	&	Link,	2010),	only	5	years	
of	diet	data	are	available	 in	 the	North	Sea	 (ICES,	1997).	The	annual	
age-based	diet	data	simulated	here	may	then	be	more	exhaustive	than	
data	currently	available	for	many	ecosystems.	Our	study	only	consid-
ered	 two	species	and	we	simulated	strong	predation	of	one	species	
on	the	other.	This	is	a	large	simplification	of	the	complex	structure	of	
real	fisheries	systems	where	there	may	be	numerous	weak	interactions	
of	many	species.	The	consequences	of	ignoring	predation	may	there-
fore	be	less	pronounced	in	a	system	with	a	larger	number	of	prey	and	
predators.	Trijoulet,	 Fay,	Curti,	 et	 al.	 (2019)	demonstrated	predation	
can	be	estimated	even	if	interactions	are	weak	or	diet	data	are	sparse,	
highlighting	 the	 importance	 of	 estimating	 predation	when	 diet	 data	
are	available.	Modelling	predation	explicitly	could	be	a	way	 forward	
for	achieving	 time	and	age-varying	natural	mortality	when	diet	data	
are	available.	In	the	case	of	an	absence	of	predator	diet	data,	if	natural	
mortality	is	misspecified,	managers	should	be	aware	of	the	large	bias	
that	can	result	on	stock	assessment	outputs	and	on	reference	points	
that	could	be	used	for	tactical	management	advice.
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