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Abstract
1.	 Having a realistic representation of ecosystems in fisheries models is important 
in the context of ecosystem‐based fisheries management (EBFM). While differ-
ent modelling approaches support EBFM, accounting for trophic interactions and 
uncertainty in stock dynamics is important for management advice. Multispecies 
models exist, but are rarely used for assessments. Most stock assessments are 
single species models and predation is subsumed into natural mortality, which is 
often an assumed known value. The use of state‐space assessment models, which 
account for stochasticity in unobserved processes (process errors), is increasing. 
However, many stocks are managed assuming deterministic processes. Little is 
known of how ignoring predation and process errors in stock assessment can im-
pact the perception of the stocks and therefore fisheries management.

2.	 We developed an age‐structured multispecies operating model that simulated 
data with errors in observations, recruitment and fish abundance. Four estima-
tion models (EMs) that differed according to whether or not they accounted for 
predation or process errors were fitted to the simulated data. Relative differ-
ences between true and predicted outputs were estimated as a measure of bias. 
Equilibrium unfished biomass was estimated for each model as a proxy reference 
point.

3.	 Ignoring predation had the largest impact on stock perception and resulted 
in large bias in parameters, derived outputs and absolute or relative reference 
points. Estimating unobserved processes was not sufficient in limiting the bias 
when natural mortality was misspecified.

4.	 Ignoring process errors had limited bias but the bias increased when no contrasts 
existed in fishing mortality over time.

5.	 Looking solely at likelihood values to choose among models is misleading and pre-
dictive ability could be used to prevent selecting models that overfit the data.

6.	 Synthesis and applications. Ignoring trophic interactions that occur in marine eco-
systems induces bias in stock assessment outputs and results in low model predic-
tive ability with subsequently biased reference points. While it may be difficult to 
estimate natural mortality when no data exist to inform it, stock managers should 
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1  | INTRODUC TION

Most of the world's fisheries that rely on stock assessments as the 
basis of scientific advice for management are assessed using single 
species models that only account for the dynamics of a specific fish 
stock and the fishing pressure on this stock (Skern‐Mauritzen et al., 
2015), with pressures such as environmental variability, predation 
and residual natural mortality often assumed known and constant 
over time. However, fish stocks are part of large food webs and tro-
phic pressures may vary with the predators’ dynamics, which is incon-
sistent with the assumption of constant natural mortality. Therefore 
there has been a shift towards developing ecosystem management, 
which can range in complexity to fisheries specific management 
where biotic and abiotic factors (e.g. climate change, predators) are 
incorporated individually in single species assessments, to manage-
ment where other uses of the marine ecosystem, such as renewable 
energy or tourism are also modelled (Dolan, Patrick, & Link, 2016). 
Ecosystem‐based fisheries management (EBFM) focuses on fishing 
activities, including biological, physical and economic considerations 
and therefore represents a holistic approach to fisheries manage-
ment (Link, 2010). EBFM is currently strongly supported by numer-
ous international agencies (FAO, 2003; NOAA, 2016).

Multispecies population models are becoming important tools 
for supporting EBFM approaches (Plagányi, 2007). These models 
account for trophic interactions in the dynamics of the different 
species simultaneously and are therefore a more realistic represen-
tation of the structure of the ecosystem. Different levels of com-
plexity exist in multispecies modelling. Whole ecosystem models, 
such as Atlantis (Fulton, Smith, & Johnson, 2004) or Ecopath with 
Ecosim (Christensen & Walters, 2004), are generally simulation mod-
els and predation is only informed empirically using diet data or es-
timates from the literature, and usually deterministically assumed in 
models. These models are useful to understand functional aspects 
of the ecosystem or to test management scenarios (Fulton, Smith, 
Smith, & Johnson, 2014; Grüss et al., 2016; Weijerman, Fulton, & 
Brainard, 2016). However, simulation models are less adequate for 
supporting tactical management advice, since parameters defining 
the dynamics of the populations should be estimated from data spe-
cific to the ecosystem, to evaluate weight of evidence for alternative 
hypotheses about the population dynamics and to characterize un-
certainty in our understanding of the ecosystem. In this case, statis-
tical multispecies stock assessment models are more relevant. These 
assessment models are usually of moderate complexity and only 

focus on the components of the ecosystem which are biologically or 
economically relevant for addressing management questions, and ig-
nore prey feedbacks on the predator such as food limitation effects 
on predator's growth (Plagányi et al., 2014). Development of mul-
tispecies assessment models has increased with the importance of 
EBFM with models ranging from simple deterministic Multispecies 
Virtual Population Analysis (MSVPA) models (Helgason & Gislason, 
1979; Tsou & Collie, 2001) to more complex multispecies statistical 
catch‐at‐age models (Curti, Collie, Legault, & Link, 2013; Jurado‐
Molina, Livingston, & Ianelli, 2005; Kinzey & Punt, 2009; Lewy & 
Vinther, 2004). Among these models, multispecies age‐structured 
assessments are of particular interest since age information is often 
available and many stock assessments are structured by age. These 
multispecies models follow the concept of MSVPA that emerged 
in the late 1970s with Andersen and Ursin (1977). However, mul-
tispecies age‐structured models are still rarely used to assess fish 
stocks. For instance, in the North Atlantic, the stochastic multispe-
cies model (SMS) developed by Lewy and Vinther (2004) is currently 
used for management advice, by providing values of natural mor-
tality to North Sea and Baltic Sea single species stock assessment 
models (ICES, 2018) but is not directly used as the assessment model 
for these species.

In addition to multispecies models, there is an incentive to de-
velop state‐space stock assessment models that account for uncer-
tainty in sampling that generates observations (observations errors) 
and also in unobserved biological processes responsible for stochas-
tic changes in the population over time (process errors). These state‐
space models treat the process errors as random effects which are 
integrated out to estimate fixed effects parameters from the mar-
ginal likelihood of the observations (Aeberhard, Mills Flemming, & 
Nielsen, 2018). By estimating both types of errors, these state‐space 
models become a more realistic illustration of the uncertainty that 
exists in our understanding of the fisheries systems. Despite the fact 
that state‐space single species assessments are becoming popular 
and easy to implement (Berg & Nielsen, 2016; Miller, Hare, & Alade, 
2016; Nielsen & Berg, 2014), many stock assessments are still based 
on models that ignore process errors or treat them as fixed varia-
tions. State‐space multispecies fisheries assessments are even less 
common.

Here, we investigate how ignoring process errors and trophic 
interactions affects stock assessment model performance and fish-
eries management. A simulation study was conducted using the mul-
tispecies stock assessment model of Trijoulet, Fay, Curti, Smith, and 

remember that, if predation is large, assuming a constant mortality over time and/
or age could have large consequences on stock perception and reference point 
estimates and affect resulting management advice.
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Miller (2019) extended to account for process errors in recruitment 
and fish abundance at age. The model was used to simulate data-
sets that were then fitted to four estimation models that differed 
in whether they accounted for predation and process errors. Model 
performance was determined by calculating relative differences 
between true and estimated values. Fits to the data and predictive 
ability of the models were analysed. The consequences of model 
assumptions on the estimation of absolute and relative proxy refer-
ence points were also evaluated.

2  | MATERIAL S AND METHODS

2.1 | State‐space multispecies operating model

The study used the multispecies age‐structured model presented in 
Trijoulet, Fay, Curti, et al. (2019) and developed in Template Model 
Builder (TMB; Kristensen, Nielsen, Berg, Skaug, & Bell, 2016). It was 
applied to two fish species, modelled to be characteristic of Georges 
Bank Atlantic cod (Gadus morhua; Northeast Fisheries Science 
Center, 2015) and Northwest Atlantic herring (Clupea harengus; 
Deroba, 2015). Cod is assumed to prey on both herring and small 
cod. The model equations are summarized in Table 1 and the model 
settings in the Supporting information (part 1). Trophic interactions 
were assumed to be large between the predator and the prey as il-
lustrated in Supporting information (part 2).

The model of Trijoulet, Fay, Curti, et al. (2019) was extended to 
include process errors on recruitment at age 1 and annual fish abun-
dance at age. Annual log‐recruitment for species i was assumed to be 

distributed normally with mean Ri and variance �2
Ri
 (Table 1, equation 

T1.20). The process error in log abundance was a random walk as-
sumed to follow a Normal distribution with variance �2

Ni

 (Table 1, 

equation T1.21).
The state‐space model was used as an operating model (OM) to 

simulate 1,000 datasets of observations with errors on the annual 
total fishing catches by species, annual aggregated (over ages) sur-
vey abundance indices, age composition of catch and survey and 
the diet of predators. Log total fishing catches and indices for each 
species were assumed normally distributed and age compositions 
for both were assumed multinomial distributed (Table 1, equations 
T1.15 to T1.18). The diet data were composed of proportions of 
prey by weight in the stomach of the predator and were generated 
per predator age and year (EM2 in Trijoulet, Fay, Curti, et al., 2019) 
and these were assumed to follow a Dirichlet distribution (Table 1, 
equation T1.19). Process errors in recruitment and abundance were 
simulated as per equations T1.20 and T1.21.

2.2 | Estimation models

The study considered four estimation models (EMs) to be used for 
tactical management:

EM1: state‐space multispecies model estimating fishing, preda-
tion and residual natural mortality. It has the same configuration as 

the operating model and estimates process errors on recruitment 
and fish abundance.

EM2: multispecies statistical catch‐at‐age model estimating fish-
ing, predation and residual natural mortality. Process errors were 
not accounted for in this model so changes in fish abundance were 
assumed deterministic and annual values of recruitment were esti-
mated with no distributional constraint. This model allows investiga-
tion of how ignoring process error in stock assessment may impact 
model performance.

For EM1 and EM2, diet data were fitted using equation T1.19 
where diet observations were annual proportions of prey (in weight) 
present in the diet of cod and given for each predator age.

EM3: state‐space model assuming total natural mortality con-
stant across ages and time. Trophic interactions were not explicitly 
estimated, so the estimate of total natural mortality from this model 
corresponds to M + P. This model investigates the consequences of 
ignoring predation and assuming that natural mortality is constant 
over age and time, an assumption commonly made in stock assess-
ment practice (Northeast Fisheries Science Center, 2015), with the 
exception that M is estimated here while it is often fixed at a known 
value in stock assessments.

EM4: state‐space model estimating age‐varying natural mortal-
ity. The natural mortality was assumed to follow an allometric rela-
tionship with weight at age (Lorenzen, 1996; Peterson & Wroblewski, 
1984; Ursin, 1967) and with parameters of this relationship being 
estimated (α and β in Equation 1).

To aid the estimation of natural mortality, prior distributions pa-
rameterized using estimates in Lorenzen (1996) were used:

EM4 investigates how not explicitly accounting for predation 
could impact model performance when age‐varying total natural 
mortality (M + P) is still estimated. Assuming Equation (1) forces nat-
ural mortality to decrease with fish age which most resembles the 
shape of M + P in the simulated datasets (higher predation mortal-
ity on younger fish). An allometric M is sometimes used in stock as-
sessment but α and β are usually fixed at the Lorenzen values rather 
than estimated (ICES, 2017). For simplicity, in all models, the annual 
weight at age of both fish species was constant over time and given 
by the averaged weight over time from the recent stock assessments 
for each species (Deroba, 2015, Northeast Fisheries Science Center, 
2015). This resulted in an estimated M at age constant over time for 
EM4.

Given that predation mortality in the simulated datasets varies per 
age and over time, the EMs 3 and 4 are expected to show some bias 
due to misspecification of the total natural mortality but, whether the 

(1)Ma,i=�iw
�i

a,i

(2)�i∼

(

3.69, 0.52
)

(3)�i∼

(

−0.305, 0.0282
)
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TA B L E  1  Equations of the operating multispecies model

Number Name Equation Comments

Structural model

T1.1 Predicted number at age a and 
year t of fish species i

N̂t+1,a+1,i=Nt,a,ie
−Zt,a,i

N̂t+1,Ai ,i
=Nt,Ai ,i

e−Zt,Ai ,i +Nt+1,Ai ,i
e−Zt+1,Ai ,i

A is the age plus group. Numbers at age 
in the 1st year N̂t=1,a,i are estimated 
parameters

T1.2 Total mortality Zt,ai=Ft,a,i+Mi+Pt,a,i M is the residual natural mortality

T1.3 Fishing mortality Ft,a,i= fts
F
a,i

f  is the freely estimated fully selected 
fishing mortality

T1.4 Fishing selectivity sF
a,i
=

1

1+e

(

−

(

ai−A50
F
i

�Fi

))

Logistic form where �F and A50F are esti-
mated parameters on a logit scale

T1.5 Predation mortality
Pt,a,i=

B
∑

b=1

�

cons_ratebNt,b

�t,a,i,b
∑I

i=1

∑Ai

a=1
�t,a,i,b+�othert,b

� cons_rate is the per‐capita consumption 
rate of cod of age b and maximum age 
B and is given in Trijoulet, Fay, Curti, et 
al. (2019)

T1.6 Biomass of modelled prey 
available to cod

�t,a,i,b=�t,a,i,bNt,a,iwt,a,i
 

T1.7 Prey suitability
�t,a,i,b=�igt,a,i,b

� is the estimated prey general 
vulnerability

T1.8 Cod size preference gt,a,i,b∼Gamma
(

log
(

wt,b

wt,a,i

)

, 0.552, 9.308
)

Gamma distribution

T1.9 Biomass of other food 
available

�othert,b
=�otherBother

Bother=15,000 t and �other=1−
I
∑

i=1

�i

T1.10 Predicted survey abundance 
index

Ît,a,i=qis
surv
a,i

Nt,a,ie
−𝜓tZt,a,i � is the fraction of the year elapsed when 

the survey takes place

T1.11 Survey catchability qi=
1

1+e− log it_qi

Freely estimated

T1.12 Survey selectivity ssurv
a,i

=
1

1+e

(

−

(

ai−A50
surv
i

�survi

))
Logistic form where �surv and A50surv are 
estimated parameters on a logit scale

T1.13 Predicted fishing catch Ĉt,a,i=
Ft,a,i

Zt,a,i
Nt,a,i

(

1−e−Zt,a,i
)

Baranov equation

T1.14 Spawning stock biomass
SSBt,i =

Ai
∑

a=1

�

Nt,a,iw
SSB
t,a,i

matt,a,ie
−�iZt,a,i

� wSSB is the observed weight in the spawn-
ing stock biomass (SSB), mat is the 
proportion of mature fish at age and � 
is the fraction of the year elapsed when 
the spawning takes place

Likelihood components

Observation errors

T1.15 Fit to observed aggregated 
catch log

�

Ct,i

�

�Nt,a,i∼

�

log

�

Ai
∑

a=1

Ĉt,a,iwt,a,i

�

, 𝜎2
Ct,i

�

The observation variance (�2
C
) is given as 

input

T1.16 Fit to observed aggregate 
survey indices log

�

It,i,k
�

�Nt,a,i∼

�

log

�

Ai
∑

a=1

Ît,a,i,k

�

, 𝜎2
It,i,k

�

The observation variance (�2
I
) is given as 

input

T1.17 Fit to age composition in 
observed catch

log

�

Ct,a,i

∑Ai

a=1
Ct,a,i

�

�Nt,a,i∼Multinom

�

log

�

Ĉt,a,i

∑Ai

a=1
Ĉt,a,i

��

Multinomial distribution

T1.18 Fit to age composition in 
observed survey indices

log

�

It,a,i,k
∑Ai

a=1
It,a,i,k

�

�Nt,a,i∼Multinom

�

log

�

Ît,a,i,k
∑Ai

a=1
Ît,a,i,k

��

Multinomial distribution

T1.19 Fit to prey proportions in the 
diet of cod

∑An

a=1
�t,a,n,b

�othert,b
+

∑I

i=1

∑Ai

a=1
�t,a,i,b

∼Dirichlet

�

stomt,n,b
∑I+1

n=1
stomt,n,b

, �

�

n is the index for prey including other 
food. � is an estimated parameter

Process errors

T1.20 Random recruitment log
(

Nt+1,a=1,i

)

∼

(

log
(

Ri

)

, �2
Ri

)

R is the mean recruitment and �2
R
 the vari-

ance around the mean

T1.21 Random abundance at age log
(

Nt+1,a+1,i

)

|Nt,a,i∼

(

log
(

Nt,a,i

)

, �2
Ni

)

�2
N
 is the process error variance

The values in comment column are given in supporting information
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performance of these models assuming a constant natural mortality 
across time (EM4) and ages (EM3) are substantially degraded is con-
sequential, since these are commonly made assumptions in practice.

Estimated parameters included fishing mortality parameters 
(fully selected annual fishing mortality ft and parameters governing 
selectivity at age �F and A50F), survey abundance index parameters 
(survey catchability q and selectivity at age parameters, �surv and 
A50surv), the abundance at age in the first year (N1,a,i), the predation 
parameters (general vulnerability � and Dirichlet distribution pa-
rameter �), annual recruitment at age 1 (Nt,1,i; EM2 only) and resid-
ual natural mortality per prey species (Mi, EM1–EM3) or Lorenzen 
parameters (α and β, EM4). With M being held constant across ages 
and years in the OM, only one value of M was estimated by prey 
species in EM1–EM3. Additional estimated parameters in EM1, EM3 
and EM4 included mean recruitment (Ri), standard errors (�Ri) for the 
recruitment process, the matrix of numbers at age (N̂) and standard 
errors on fish abundance (�Ni

).

2.3 | Sensitivity analyses

Two sensitivity analyses were carried out. First, the simulations were 
run assuming a constant fully selected fishing mortality (f) in the OM, 
which resulted in a constant F at age over time, to see how having 
no contrast in annual fishing mortality may impact the performance 
of the models. Second, we explored the effect of misspecification of 
the process error structure. In the OM the source of process error 
with the largest variance is recruitment. An additional EM (EM1b) 
was fitted to the 1,000 simulated datasets where recruitment was 
assumed to follow a random walk with estimated variance instead of 
being random about an estimated mean (original EM1). This model 
tests if misspecification in process error affects bias of EM1.

2.4 | Convergence criteria and performance metrics

Each EM was fitted to the 1,000 simulated datasets. Convergence 
was diagnosed by a maximum gradient component less than 0.0001 
and a positive definite hessian matrix.

Median relative differences (RD) were estimated across all con-
verged iterations for estimated parameters and derived outputs (𝜃̂).

where � is the true value of the parameter or derived output. The 95% 
confidence intervals of the median RD were estimated using the bino-
mial distribution method of Thompson (1936).

Diet data were not used in EM3 and EM4, so the EMs were not com-
parable using selection criteria such as the Akaike information criterion. 
Quality of fit to the observed data was assessed by taking the difference 
between the negative log‐likelihood (NLL) values in each simulation for 
EM1 and the NLLs for the misspecified models (EM2–EM4).

A model's ability to provide accurate projections of the stocks 
can be evaluated by studying the predictive ability of the models. 
The EMs were run omitting the observed aggregated indices and 

their corresponding age composition in the last 5 years of the time 
series. Predictions were compared to the missing observations using 
Equation (4) for the four EMs. Models that show the least bias in 
predicted indices should provide most robust forecasts.

Only the converged outputs were kept for analysis, resulting be-
tween 293 and 931 iterations depending on the EM. It was chosen 
not to run more simulations even if the number of convergences was 
low so that all models used the same datasets. A sensitivity anal-
ysis running more simulations to obtain 1,000 converged runs for 
the EMs that resulted in the smallest number of convergences gave 
median RD values similar to the original outputs (results not shown). 
The number of convergences only affected the size of the confi-
dence interval around the median RD.

2.5 | Proxy reference point estimation

Since the models did not estimate a stock recruitment relation-
ship, the impact of considering trophic interactions and process 
errors on reference point estimates was investigated by estimat-
ing a proxy reference point, unfished biomass (B0). For each model 
and each iteration (OM and EMs), equilibrium unfished biomass 
was obtained by projecting both stocks forward for an additional 
500 years with F=0 and with the same assumptions in the fore-
casts as in the models (e.g. for the multispecies state‐space EM1, 
random walk on recruitment was assumed in the forecast given the 
mean and standard deviation estimates for each EM1 iteration). 
Input values such as mean weight at age were set as the average 
over the 42 years used in the simulated datasets. For EM2, fore-
cast recruitment was the average over the 42 years and assumed 
constant. Unfished biomass was estimated by taking the average 
spawning stock biomass (SSB) over years 400–500. For the mul-
tispecies models, the prey abundances depend on the predator 
abundance so both stocks oscillate around an equilibrium rather 
than approaching a constant SSB value. Unfished biomass cor-
responds therefore to this equilibrium. To limit variability due to 
process errors in the forecasts, for the models with process errors 
(OM, EM1, EM3 and EM4), 100 runs were made for each iteration 
and B0 was calculated as the average over these 100 iterations. To 
keep consistency in the forecasts for all models, we also ran the 
same simulations with no process error in the projections.

For each iteration, the relative differences were calculated be-
tween B0 estimated in the forecasts with the OM with B0 in the EMs’ 
forecasts to see how the EMs performed regarding the estimation 
of the absolute reference point. Bias on a relative scale was also cal-
culated by taking the ratio between the last estimated SSB (SSBy=42

) and B0 in the forecasts for each model iteration. These ratios were 
compared to the same ratios obtained in the OM to assess possible 
bias in estimation of relative reference point.

To understand the trade‐offs associated with fishing op-
portunities in a multispecies context, we also investigated how 
equilibrium SSB estimates varied compared to B0 for different 
combinations of fishing mortality on both species for the OM. We 
used F multipliers between 0 and 2 with a step of 0.1 on both 

(4)RD=

𝜃̂

𝜃
−1
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species (for a total of 441 combinations of F on cod and herring) 
and projected the stocks forward for 500 more years. As for pre-
vious projections, process errors on recruitment and abundance 
at age were assumed in the forecasts and 100 iterations were run 
per F combination. We looked at how the ratios of equilibrium SSB 
for each F combination (average years 400–500) against B0 varied 
with changes in F for both species.

3  | RESULTS

The convergence rate varied considerably among the EMs (Table 2). 
EM2 converged most frequently followed by EM1. The EMs not 
explicitly accounting for predation (EM3 and EM4) had low conver-
gence rates.

EM1, which had the same configuration as the OM, performed 
best in estimating the parameters with a maximum bias around −0.4% 
for cod catchability (q, Figure 1). The numbers at age in the first year 
were slightly underestimated with a maximum bias of −6% (Figure 2). 
Assuming deterministic recruitment and change in fish abundance 
(EM2) increased the bias compared to EM1, notably in survey catch-
ability for both species but the bias was below 3% for all parameters. 
Numbers of fish in the first year were underestimated with bias be-
tween −2% and −8%. When predation was not explicitly estimated 
(EM3 and EM4), estimation bias increased for most parameters, from 
2% to 52% for EM3 and 2% to 220% for EM4 (Figure 1). The largest 
bias observed was in estimates of cod mean recruitment and herring 
catchability for EM3 (−38% and −52% respectively) and in herring 
catchability and mean recruitment for EM4 (−47% and 220% respec-
tively). EM3 overestimated fish numbers in the first year, notably for 
herring where the bias reached 336% (Figure 2). Numbers at age in 
the first year were overestimated for cod (up to 46%) and herring (up 
to 442%) when M was modelled as a function of fish weight (EM4).

Negative bias in maximum likelihood estimates of process error 
variances is expected. Here, EM1 underestimated the variance in an-
nual abundance at age for cod and herring (−27% and −34% respec-
tively, Figure 3). Variance of annual recruitment was only slightly 

TA B L E  2  Convergence rate in percent for each estimation 
models

EM1 EM2 EM3 EM4

77.5 93.1 30.7 29.3

F I G U R E  1  Median relative differences and 95% confidence interval for some estimated parameters. Each plot corresponds to a specific 
estimation model (EM). Note the change in the y‐axis
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underestimated (2%–3% for both species). However, the models 
ignoring predation overestimated the variance in process errors on 
the abundance at age for herring and recruitment variance for both 
species. Variance of the process error on the abundance at age for 
cod for both EM3 and EM4 was estimated to be close to zero.

Spawning stock biomass (SSB) and recruitment were well‐esti-
mated for EM1 and the bias slightly increased below −1%–2% for 
SSB and −3% for recruitment with EM2 (Figure 4). Estimation bias 
increased substantially for EM3 and EM4 and was maximal for her-
ring with a bias in SSB and recruitment of 23%–100% for EM3 and 
73%–229% for EM4.

As expected, EM1 showed the smallest bias in estimated 
mortality rates, with these being well‐estimated for both species 
(Figure 5). The largest bias was for cod residual natural mortal-
ity and was around 1.4%. Ignoring process errors (EM2) induced 
a larger bias in estimated M of around −5% for cod and −5.6% for 
herring. As a result, fishing and predation mortality were slightly 
overestimated for both species. Not explicitly accounting for pre-
dation (EM3 and EM4) had the largest impact on estimation bias, 
most notably for herring where F was underestimated (median 
around −50%) and M overestimated (around 23%) for both EM3 
and EM4.

On average, EM2 presented larger NLLs than EM1 for all types 
of observed data demonstrating that EM1 fitted the data better 
than EM2 (Figure 6). However, EM3 and EM4 fitted the aggregated 

F I G U R E  2  Median relative differences and 95% confidence interval for estimated numbers of fish at age in the first year of simulation. 
Each plot corresponds to a specific estimation model (EM). Note the change in the y‐axis
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F I G U R E  3  Median relative differences and 95% confidence 
interval for the estimated process error variances in abundance at 
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F I G U R E  4  Median relative differences in spawning stock biomass (SSB) and recruitment (R). Annual values of SSB and recruitment are 
aggregated within each boxplot. Note the change in the y‐axis
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F I G U R E  5  Median relative differences in estimated fishing mortality (F), predation mortality (P) and residual natural mortality (M). Year 
and age component are aggregated within the boxplot. For EM1 and EM2, M is given as median relative difference with 95% confidence 
interval because only one value is estimated per EM (M constant across age and time). For EM3 and EM4, predation is not explicitly 
estimated so the value for M is compared to M + P. Note the change in the y‐axis
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catch and the age compositions for the catch and surveys better 
than EM1.

EM1 and EM2 were robust in predicting the observed values 
for survey indices in the last 5 years of the times series despite the 
absence of data on aggregated indices and their age composition, 

with a difference between observed and predicted indices below 2% 
(Figure 7). However, when predation was ignored, bias in predicted 
indices increased in the last years of the time series as did the un-
certainty around the median estimates. As a result, EM3 and EM4 
present a clear increase in bias in predicted SSB at the end of the 

F I G U R E  6  Distributions of differences between negative log‐likelihood (NLL) values for EM1 with NLLs for EM2, EM3 and EM4, for all 
converged iterations and for each observation component. Positive values represent an improvement in fit and inversely. The grey dashed 
line shows the distribution median
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F I G U R E  7  Median relative difference and 95% confidence interval in the last 10 years of aggregated survey indices for the simulations 
where the last 5 years of observed survey indices were not included in the model fitting procedure. Note the change in the y‐axis

−0
.0

2
−0

.0
1

0.
00

0.
01

0.
02 Cod

Herring

−0
.2

0.
2

0.
4

0.
6

0.
8

2005 2008 2011 2014 2007 2010 2013 2005 2008 2011 2014 2007 2010 2013

R
el

at
iv

e 
di

ffe
re

nc
e

Year

EM1 EM2

EM3 EM4

F I G U R E  8  Median relative difference and 95% confidence interval in the last 10 years of spawning stock biomass for the simulations 
where the last 5 years of observed survey indices were not included in the model fitting procedure. Note the change in the y‐axis
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time series while bias was still low for this period in EM1 and EM2 
(Figure 8).

When f was held constant over time in the OM, only EM1 
showed a small bias in estimated parameters and derived outputs 
(Supporting information, part 3.1). Bias in EM1 and EM2 increased 
compared to the original results (Figures S4–S8), with parameters 
and derived outputs that were slightly biased in the original sim-
ulations having larger bias. The bias in estimates of M went from 
5%–6% to 11%–17% for EM2 (Figure S8) and bias in SSB and re-
cruitment from 1%–2% to >6% and from 3% to >10%, respectively 
(Figure S7). For EM4, no contrast in F at age over time in the OM 
had the opposite effect (smaller bias than original simulations) but 
the bias was still larger than that obtained for EM1 and EM2, with 
0%–60% bias in parameter estimates (Figures S4–S5) and 20%–
60% bias in SSB and recruitment (Figure S7). For EM3, no contrast 
in F over time led to an inability to estimate true values for herring 
recruitment (Figure S7) and mortality (Figure S8). F was overesti-
mated and M was reduced to 0.

Misspecifying recruitment process error in EM1b had a small 
effect on estimation bias (Supporting information, part 3.2). 
Biases in herring SSB, recruitment (Figure S11) and mortality 
rates (Figure S12) increased slightly compared to EM1 but overall 

were similar. Bias in all parameters and outputs were smaller than 
for EM2.

Bias in absolute (B0) and relative (SSBy=42

/

B0) reference points 
was largest for the single species models (EM3 and EM4, Figure 9). 
Bias was also large for EM2 (≃20%) compared to EM1 because of 
the absence of process errors in the forecasts compared to the 
OM, inducing a change in the assumption about recruitment. The 
bias was largely reduced for EM2 when no process error was as-
sumed in the forecasts for all models (Supporting information, part 
4, Figure S13).

Increasing F on cod or herring reduced the equilibrium SSB for 
the respective species (Figure 10). However, increased F on herring 
did not affect equilibrium unfished cod SSB and increased F on cod 
increased equilibrium unfished herring SSB (ratio > 1) faster than the 
decrease in herring SSB when F increased on herring.

4  | DISCUSSION

Modelling predator–prey interactions and predator impacts on 
prey abundance has been proven important in systems outside 
of marine fisheries including terrestrial environments (Hanski, 

F I G U R E  9  Median relative difference and 95% confidence interval for the absolute unfished biomass (B0) and relative (SSBy=42

/

B0) 
reference point estimates when process errors were assumed in the forecasts for OM, EM1, EM3 and EM4
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Henttonen, Korpimäki, Oksanen, & Turchin, 2001; Owen‐Smith 
& Mills, 2008), aquatic systems (Tsehaye et al., 2014) and across 
ecosystems (Knight, McCoy, Chase, McCoy, & Holt, 2005). Here, 
we show that ignoring trophic interactions in fisheries stock as-
sessment models (EM3 and EM4) when these are strong can bias 
estimates of dynamics and population parameters and can result 
in low model predictive ability. These biases could affect stock 
management as they result in biased reference point estimates 
on both absolute and relative scales. Assuming a known natural 
mortality fixed as constant over time and sometimes ages is a 
common approach used in stock assessment (Johnson et al., 2015; 
Lee, Maunder, Piner, & Methot, 2011; Miller & Hyun, 2018). It is 
therefore important to know that, despite a fit to observed data 
that could be perceived as reasonable (Figure 6), misspecifications 
of natural mortality can affect the perception of fish stock sta-
tus irrespective of harvest history (EM3 and EM4 had large bias 
for both constant and varying F), and the consequences of these 
changes in perception on catch advice can be great.

By estimating process errors, state‐space models could poten-
tially compensate for ignoring unobserved variability due to preda-
tion. However, our results suggest that models that did not explicitly 
account for trophic interactions (EM3 and EM4) were unable to get 
consistent process error estimates and to differentiate between pro-
cess errors on abundance and recruitment. Using state‐space models 
to model unobserved mortality such as predation and residual natural 
mortality was not sufficient to limit bias. These misspecified models 
also resulted in the lowest convergence rates illustrating the difficulty 
in estimating parameters when natural mortality is misspecified. The 
role of observed data and assumptions on natural mortality in the abil-
ity of models to distinguish among sources of variability in population 
dynamics processes should be an area for future work.

Most stock assessment models assume deterministic processes 
(Dichmont et al., 2016). Here, we showed that ignoring process 

errors in a multispecies context (EM2) had a small impact on model 
performance, while providing a high convergence rate (Table 2). 
Ignoring process errors induced relatively low bias in parameter es-
timation when annual contrasts in fishing mortality were assumed. 
Low bias was also observed in reference point estimation when the 
forecast assumptions were the same as in the OM. However, these 
biases may increase if no contrast exists between the different mor-
tality rates, likely due to difficulty in partitioning total mortality into 
the different mortality rates when there is little contrast in mortality 
rates and process errors are ignored. Bias in proxy reference point 
estimates also increased when compared to the OM forecasts that 
accounted for unobserved variability in both stocks. This was mainly 
due to the difference in recruitment assumption, which matters 
when forecasting fish stocks. Estimating process errors in fisheries 
models should result in more robust parameters and derived out-
puts (Aeberhard et al., 2018) even if process errors are misspecified 
or their variances underestimated (EM1, EM1b) because this more 
closely reflects the emergent complexity of the biological processes 
in fisheries ecosystems.

Statistics derived from likelihood values are commonly used for 
model selection, e.g. Akaike information criterion and Bayesian in-
formation criterion (Akaike, 1987; Schwarz, 1978). Here, we showed 
that looking solely at likelihood values to choose the best model can 
be misleading since misspecified models (EM3 and EM4) may over-
fit the observations and perform poorly at predicting unobserved 
data. Models that overfit the data were imprecise at forecasting, 
with large consequences for fisheries management if they were cho-
sen as the basis for advice, since reference point estimates could 
be incorrect on both the absolute and relative scale. In practice, an 
analyst does not know which of a set of models best represents the 
system being observed and the goal of model selection is to deter-
mine which of the set does this. EM3 and EM4 fit the observed data 
best for three of the four data types despite misspecification in M. In 

F I G U R E  1 0  Ratio of equilibrium 
spawning stock biomass against B0 for 
both species as a function of change in 
fishing mortality on both stocks for the 
OM
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this particular case, it was important to check the predictive ability 
of the models, which was very poor, to reject both models for pro-
viding management advice.

Multispecies fisheries models have been recognized to improve 
estimates of natural mortality and recruitment and provide a frame-
work for ecosystem‐based management (Hollowed et al., 2000; 
Plagányi, 2007). Here, multispecies models (EM1 and EM2) provided 
robust outputs and outperformed single species models (EM3 and 
EM4). Predictive ability of the models and estimation of reference 
points were also improved in the multispecies cases. However, de-
fining optimal yield for fisheries is not straightforward in multispe-
cies models (Fogarty, 2013; Moffitt et al., 2016). It is not generally 
possible to maximize the yield of several species simultaneously, 
and maximizing an aggregate yield can lead to complete collapse of 
one or more species (Gaichas et al., 2012). Even our relatively simple 
forecasts of a two‐species system without stock‐recruit relation-
ships illustrate this difficulty (Figure 10). Methods for determining, 
communicating and visualizing the trade‐offs associated with multi-
species reference points are needed to improve our understanding 
of the consequences of considering trophic interactions on the man-
agement of natural resources.

The state‐space multispecies model developed in this study and 
extended from the statistical catch‐at‐age model of Trijoulet, Fay, 
Curti, et al. (2019) was proven a consistent tool to assess fish stocks 
in a stochastic multispecies context. Indeed, the estimation model 
that shared the OM configuration (EM1) showed little bias in all pa-
rameters and derived outputs and was robust in estimating fishing, 
predation, and residual natural mortality even when process error 
on recruitment was misspecified (EM1b). The maximum bias was on 
the variance of the process errors on fish abundance (≃−30%), larger 
than bias in recruitment process error standard deviation (≃−3%). 
Underestimating process error variances is common in simulation 
testing and larger underestimation of variance in process errors on 
fish abundance compared to recruitment was also observed in state‐
space single species models (Miller & Hyun, 2018). Auger‐Méthé et 
al. (2016) demonstrated that estimation bias can occur when obser-
vation errors are larger than process errors. Here, this was the case 
for process errors on fish abundance but not for process errors on 
recruitment, and this could explain the observed difference in bias.

For the models not explicitly accounting for predation (EM3 and 
EM4), parameter bias was generally larger for herring than for cod. This 
was because predation is highest on herring compared to cod and mis-
specifiying total natural mortality (M + P) on this stock will have larger 
impact than misspecifying it for cod. Estimating time or age‐varying 
mortality might be expected to result in better performance than a 
constant value across ages and over time. In our study, one would ex-
pect EM4 to be a better model than EM3, since EM4 accounts at least 
for age‐varying total natural mortality. However, EM4 showed the larg-
est bias. Similarly, constant natural mortality gave better results than 
age‐varying mortality in state‐space single species assessment (Miller 
& Hyun, 2018). Deroba and Schueller (2013) also concluded that mis-
specification of temporal variations in M results in more bias than vari-
ation with age for single species statistical catch‐at‐age models, when 

M is assumed known. This could also be the case in our example, but 
it was not possible to estimate time‐varying M with our EMs (only five 
convergences over 1,000 iterations). Temporal variation in M was esti-
mated in Johnson et al. (2015), but M in their OM was constant across 
ages. While it may be possible to estimate a constant M in assessment 
models, if M varies over time and ages the task seems difficult to 
achieve without data to inform it.

Ignoring trophic interactions may have large consequences in stock 
assessments but modelling predation is often compromised by paucity 
of diet data. While stomach content data have been collected annu-
ally in the Northeast US since 1973 (Smith & Link, 2010), only 5 years 
of diet data are available in the North Sea (ICES, 1997). The annual 
age‐based diet data simulated here may then be more exhaustive than 
data currently available for many ecosystems. Our study only consid-
ered two species and we simulated strong predation of one species 
on the other. This is a large simplification of the complex structure of 
real fisheries systems where there may be numerous weak interactions 
of many species. The consequences of ignoring predation may there-
fore be less pronounced in a system with a larger number of prey and 
predators. Trijoulet, Fay, Curti, et al. (2019) demonstrated predation 
can be estimated even if interactions are weak or diet data are sparse, 
highlighting the importance of estimating predation when diet data 
are available. Modelling predation explicitly could be a way forward 
for achieving time and age‐varying natural mortality when diet data 
are available. In the case of an absence of predator diet data, if natural 
mortality is misspecified, managers should be aware of the large bias 
that can result on stock assessment outputs and on reference points 
that could be used for tactical management advice.
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